Fast Optimal Load Balancing Algorithms for 1D Partitioning *

Ali Pinar Cevdet Aykanat
Department of Computer Science Computer Engineering Department
University of Illinois at Urbana-Champaign Bilkent University, Ankara, Turkey
alipinar@cse.uiuc.edu aykanat@cs bilkent.edu.tr

Proposed running head : Fast Optimal Load Balancing for 1D Partitioning

Corresponding author : Assoc. Prof. Cevdet Aykanat
Computer Engineering Department
Bilkent University
TR-06533, Ankara, TURKEY
e-mail: aykanat@cs.bilkent.edu.tr
tel : +90 (312) 290-1625
fax : +90 (312) 266-4126

*This work is partially supported by The Scientific and Technical Research Council of Turkey under grant EEEAG-199E001

Abstract

One-dimensional decomposition of nonuniform workload arrays for optimal load balancing is investigated. The
problem has been studied in the literature as "chains-on-chains partitioning" problem. Despite extensive research
efforts, heuristics are still used in parallel computing community with the "hope" of good decompositions and
the "myth" of exact algorithms being hard to implement and not runtime efficient. The main objective of this
paper is to show that using exact algorithms instead of heuristics yields significant load balance improvements
with negligible increase in preprocessing time. We provide detailed pseudocodes of our algorithms so that our
results can be easily reproduced. We start with a review of literature on chains-on-chains partitioning problem.
We propose improvements on these algorithms as well as efficient implementation tips. We also introduce novel
algorithms, which are asymptotically and runtime efficient. We experimented with datasets from two different
applications: Sparse matrix computations and Direct volume rendering. Experiments showed that the proposed
algorithms are 100 times faster than a single sparse-matrix vector multiplication for 64-way decompositions
on average. Experiments also verify that load balance can be significantly improved by using exact algorithms
instead of heuristics. These two findings show that exact algorithms with efficient implementations discussed

in this paper can effectively replace heuristics.

Key Words : one-dimensional partitioning; optimal load balancing; chains-on-chains partitioning; dynamic
programming; iterative refinement; parametric search; parallel sparse matrix vector multiplication; image-space

parallel volume rendering.

1 Introduction

In this work, we investigate block partitioning of possibly multi-dimensional nonuniform domains over one-

dimensional (1D) workload arrays. The communication and synchronization overhead is assumed to be handled
implicitly by the selection of proper partitioning and parallel computation schemes at the beginning, so that
load balance is the only metric explicitly considered in the decomposition. The load balancing problem in the
partitioning can be modeled as the chains-on-chains partitioning (CCP) problem with nonnegative task weights
and unweighted edges between successive tasks. The objective of the CCP problem is to find a sequence of
K —1 separator indices to divide a chain of N tasks with associated computational weights into i’ consecutive
parts such that the bottleneck value —the load of the maximally loaded part—is minimized.

The first polynomial time algorithm for solving the CCP problem was proposed by Bokhari [4]. Bokhari’s
O(N3K)-time algorithm is based on finding a minimum path on a layered graph. Nicol and O’Hallaron [30]
reduced the complexity to O(N2K) by decreasing the number of edges in the layered graph. The algorithm
paradigms used in the following works can be classified as dynamic programming (DP), iterative refinement,
and parametric search. Anily and Federgruen [1] initiated the DP approach with an O(N> K)-time algorithm.
Hansen and Lih [13] independently proposed an O(N2 K)-time algorithm. Choi and Narahari [6], and Olstad
and Manne [34] introduced asymptotically faster O(N K')-time, and O((N —K') K)-time DP-based algorithms,
respectively. Iterative refinement approach starts with a partition and iteratively tries to improve the solution.
The O((N — K) K log K)-time algorithm proposed by Manne and Sgrevik [26] falls into this class.

The parametric-search approach relies on repeated probing for the existence of a partition with a bottleneck
value no greater than a given value. Such a probing takes #(V') time since every task has to be examined. Since
probing needs to be performed repeatedly, an individual probe can efficiently be performed in O(K 1g N)-time
through binary search, after performing an initial prefix-sum operation in #(N)-time for task chains with zero
communication costs [17]. Later, O(K 1g N)-time probe algorithms were proposed to handle task chains with
nonzero communication costs [19, 20, 21, 32]. Finally, the complexity of an individual probe call was reduced
to O(K lg(N/K)) by Han, Narahari, and Choi [12].

The parametric-search approach goes back to Igbal’s [16, 20] work describing an e-approximate algorithm,
which performs O(1g(W;,;/¢)) probe calls. Here, W,,; denotes the total task weight and ¢ denotes the desired
accuracy. Igbal’s algorithm exploits the observation that the bottleneck value is in the range [W;,;/ K, Wyo],
and performs a binary search in this range by making O(lg(W,:/¢)) probe calls. This work was followed
by several exact algorithms involving efficient schemes for the search over bottleneck values by considering
only subchain weights. Nicol and O’Hallaron [30, 32] proposed a search scheme which requires at most 4 N
probe calls. Igbal and Bokhari [21] relaxed the restriction of this algorithm [30, 32] on bounded task weight
and communication cost, by proposing a condensation algorithm. Igbal [18] and Nicol [32, 33] concurrently
proposed an efficient search scheme which finds an optimal partition after only O(K 1g N') probe calls.

Asymptotically best algorithms were proposed by Frederickson [7, 8] and Han, Narahari, and Choi [12].

Frederickson proposed an O(N)-time optimal algorithm using parametric search. Han et. al. proposed a
recursive algorithm with complexity O(N+K ') for any small ¢ > 0. However, these two works have mostly
centered around decreasing the asymptotic running time, disregarding the usefulness of the presented methods
in application.

Despite these extensive research efforts on the solution of the CCP problem, heuristics are still commonly
used in the parallel computing community. A recent research work [27] exists that is devoted to proposing
efficient heuristics for the CCP problem. This attitude depends on the ease of implementation, efficiency, and
expectation of “good” quality decompositions of heuristics, and the misconception that exact CCP algorithms
are not affordable as a preprocessing step for efficient parallelization. This work proposes efficient exact CCP
algorithms. The implementation details and the pseudocodes of the proposed algorithms are clearly presented
so that they can easily be reproduced. In order to justify the use of the proposed algorithms, we also demonstrate
that qualities of the decompositions obtained through heuristics substantially deviate from those of the optimal
ones through experimental results on a wide range of real-world problems.

We run an effective heuristic, as a pre-processing step, to find a “good” upper bound on the optimal
bottleneck value. Then, we exploit the lower and upper bounds on the optimal bottleneck value to restrict
the search space for separator-index values. This separator-index bounding scheme is exploited in a static
manner in the DP algorithm drastically reducing the number of table entries computed and referenced. A
dynamic separator-index bounding scheme is proposed for parametric search algorithms. This scheme narrows
separator-index ranges after each probe call. The upper bound on the optimal bottleneck value is also exploited
to find a much better initial partition for the iterative-refinement algorithm proposed by Manne and Sgrevik [26].
We also propose a different iterative-refinement scheme, which is very fast for small to medium number of
processors. The observations in the proposed iterative-refinement scheme is further exploited for incorporating
the subchain-weight concept into Igbal’s [16, 20] approximate bisection algorithm to make it an exact algorithm.

Two distinct application domains are investigated for experimental performance evaluation of the proposed
algorithms. These are 1D decomposition of irregularly sparse matrices for parallel matrix-vector multiplication
(SpMxV), and decomposition for image-space parallel volume rendering. SpMxV is the most time consuming
operation in iterative solvers, which are widely used for the solution of sparse linear system of equations. Volume
rendering is widely used for scientific visualization. Integer and real valued 1D workload arrays arising in
the former and latter applications are the distinct features of these two applications. Furthermore, SpMxV, a
fine-grain application, is exploited to demonstrate the feasibility of using optimal load balancing algorithms
even in sparse-matrix decomposition. Experiments with the proposed CCP algorithms on a wide range of
sparse test matrices show that 64-way decompositions can be achieved in 100 times less than a single SpMxV
computation time, while producing 4 times better load imbalance values than the most effective heuristic, on
average. Experimental results on volume rendering dataset show that exact algorithms can produce 3.8 times

better 64-way decompositions than the most effective heuristic, while being only 11 percent slower, on average.

Existing load—balancing models for parallel iterative solvers consider only the SpMxV operations. In
this work, we also propose a new load balancing model which considers both the SpMxV and linear vector
operations. The proposed model enables the use of the CCP algorithms without any additional overhead.

In this work, we also consider the load—balancing problem for heterogeneous systems. We briefly mention
about the modifications needed to enable the use of the proposed CCP algorithms for heterogeneous systems.
Finally, we prove the NP-Completeness of the chains partitioning (CP) problem for heterogeneous systems,
where processor permutation is allowed in subchain to processor assignment.

The organization of the paper is as follows. Section 2 presents CCP problem definition. A survey on
the existing CCP algorithms is presented in Section 3. Proposed CCP algorithms are discussed in Section 4.
Load-balancing applications used in experimentations are described in Section 5 and performance results are
discussed in Section 6. Appendix A briefly presents proposed load-balancing model for iterative solvers, and

Appendix B presents our discussion on CCP and CP problems for heterogeneous systems.

2 Preliminaries

In the CCP problem, a computational problem decomposed into a chain 7 = (t;, 2, . . ., ty) of N task/modules
with the associated positive computational weights W = (wy, wy,...,wy) is to be mapped onto a chain
P=(Py, P,,..., Px)of K homogeneous processors. A subchain of 7 is defined as any subset of contiguous
tasks, and the subchain consisting of tasks (¢;,%;41,...,%;) is denoted as 7; ;. Computational load W; ; of
subchain 7; ; is equal to W; ; = 2: ;, wp,. From the contiguity constraint, a partition IT should map contiguous
subchains to contiguous processors. Hence, a K -way chain-partition H{@ of a task chain 7 with N tasks onto
a processor chain P with K processors is described by a sequence Hﬁ =(s0,51, 52, ..., 8K) of K41 separator
indices, where sy < s1 < sy < ---< s with sg =0 and s = N. Here, s; denotes the index of the last task
of the kth part mapped to processor Py so that P gets the subchain 7,, _ 115, with load Ly = W, _ 415,
for k=1,2,..., K. Hence, partition and mapping will be used interchangeably throughout the paper, since
a partition IT also defines a mapping. Cost C'(IT) of a partition IT is determined by the maximum processor
execution time among all processors, i.e., C(IT) = B =max <x<x {Lz}. This B value of a partition is called
its bottleneck value, and the processor/part defining it is called the bottleneck processor/part. Hence, the CCP

problem can be defined as finding a mapping I1,,; which minimizes the bottleneck value B, = C(IL,).

3 Previous Work on the CCP Problem

Each CCP algorithm discussed in this section and Section 4 involves an initial prefix-sum operation on task-
weight array W for the efficiency of subsequent subchain-weight computations. So, in the discussion of each
algorithm, W is used to refer to the prefix-summed W-array, where cost of this initial prefix-sum operation is
considered in the complexity analysis. The presentation of all algorithms focus only on finding the bottleneck
value B,,; of optimal partition(s). An optimal solution can be easily and efficiently constructed by making a
PROBE(B,) call discussed in Section 3 .4 after finding B,,;. This approach avoids the overhead of maintaining

additional information during the course of the algorithm needed to ease the construction of an optimal partition.

3.1 Heuristics
Most commonly used heuristic is based on recursive bisection (RB). RB achieves K -way partitioning through
lg K bisection levels, where K is a power of 2. At each bisection step in a level, the current chain is
divided evenly into two subchains. Although optimal division can easily be achieved at every bisection step,
the sequence of optimal bisections may lead to poor load balancing. RB can be efficiently implemented in
O(N + K 1g N') time, by first performing a prefix-sum operation on the workload array W, with complexity
O(N),and then making K — 1 binary searches in the prefix-summed W-array each with complexity O(Ig NV).
Miguet and Pierson [27] recently proposed two other heuristics. The first heuristic (H1) computes the
separator values such that sy, is the largest index where W,, < kB*. Here, B* =W,/ K is the ideal bottleneck
value, and Wy,; = Y-V, w; denotes the sum of all task weights. The second heuristic (H2), further refines

—kB*) < (kB*—W,,). These

the separator indices by incrementing each s; value found in H1 if (¥, sp

Skl
two heuristics can also be implemented in O(N + K 1g V') time, by performing K — 1 binary searches in the
prefix-summed W-array.

Miguet and Pierson [27] have already proved the upper bounds on the bottleneck values of the partitions
found by H1 and H2 as By, Bry < B* +wy,q,, Where wy,,, = max;<p<n{w;} denotes the maximum task

weight. The following lemma establishes a similar bound for the RB heuristic.

LEMMA 1. Let IIgp = (s¢, s1,. - ., Sk) be a partition constructed by the RB heuristic for a given CCP problem
instance (W, N, K'). Then, Brg =C(Ilgp) satisfies Brp < B*4+wpar(K —1)/K.

PROOF. Consider the first bisection step. There exists an index 1 <#; < N such that both Wy ; _1, W; 11 v <
Wiot/2 and both Wy ;1 +w;, =W ;, Wiy, v +wi, =W, N > Wit /2. The worst case for RB occurs when
Wi, = Wiae and Wy ;1 =W; 11 v = (Wiot — Winar) /2. Without loss of generality, assume that ¢;, is assigned
to the left part so that sy 2= 1y and Wy, 2= Wiot /24 Wpae/2. In a similar worst-case bisection of 77 K/20
there exists an index 7 such that w;, = wynq, and Wy s,1 = Wi, 15, , = (Wiot — Winaz) /4, and t;, is assigned
to the left part so that sc/4 =iz and Wy, = (Wiot—wmaz)[4+ Wmaz = Wiot /44 (3 /4)Wima.. For a sequence

of 1g K such worst case bisection steps on the left parts, processor P; will be the bottleneck processor with

load Brp =W 5, = Wiot/ K+ Wpee(K —1)/ K. O

3.2 Dynamic Programming

The overlapping subproblem space can be defined as 77“ Jfork=1,2,....Kandi=k,k+1,.... N—K+Ek,
where 7;’“ denotes the k-way CCP of the prefix task-subchain 7; ;= (1,12, ..., ;) onto the prefix processor-
subchain Py, = (P, P», ..., Px). The lower and upper bounds on index 7 for a particular & are because of
the fact that there is no merit in leaving a processor empty in any mapping. From this subproblem space

definition, the optimal substructure property of the CCP problem can be shown by considering an optimal

mapping IT¥ = (s, s1, . . ., s =14) with a bottleneck value B¥ = C/(TT¥) for the CCP subproblem 7;*. If the last
processor is not the bottleneck processor in Hf , then H’;k__lI =(s0,51,--.,5k—1) should be an optimal mapping

DP (W, N, K)
B[1,i] — WI[i] for i =1,2,...,N;
for k — 2to K do
j—k—1;
fori — ktoN — K 4+ kdo
if W[i] — W[j] > B[k—1, j] then
repeat j — j + 1 until W[i] — W[j] < Blk—1, j];
if W[i] - W[j—1] < Blk—1, j] then

J=J—1
Blk,i] — W[i] — W[jl;
else

Blk,i «— B[k—1,j];

else
Blk,i] — Blk—1,j];
return B,,; — B[K, N];

Figure 1: O((N—K) K)-time dynamic-programming algorithm proposed by Choi and Narahari [6], and Olstad
and Manne [34].

for the subproblem Tsi:} Hence, the recursive definition for the bottleneck value of an optimal mapping
becomes BY¥ = min {max{Bk_1 W; }} (1)
b ki< i kg
In (1), search for index j corresponds to search for separator s;_; so that remaining subchain 7, ; is assigned
to the last processor P in an optimal mapping IT¥ of 7.*. The bottleneck value Bﬁ of an optimal mapping can
be computed using (1) in a bottom-up fashion starting from B} =W ; fori=1,2,..., N. An initial prefix-sum
on the workload array)V enables the constant-time computation of the subchain weight of the form W, ;
through W; 41 ; = W[i]— W[j]. Computing B¥ using (1) takes O(N — k) time for each 7 and &, and thus the
algorithm takes O((N — K)2K') time since the number of distinct subproblems is equal to (N — K 4 1)K .
Choi and Narahari [6], and Olstad and Manne [34] reduced the complexity of this scheme to O(N K') and
O((N — K)K), respectively, by exploiting the following observations that hold for positive task weights. For
a fixed k£ in (1), the minimum index value jf defining Bf cannot occur at a value less than the minimum
k

index value j* | defining B!

i—1>

ie., j¥ | < jF < (i—1). Hence, the search for optimal j* can start from
jf_l. In (1), Bf_l for a fixed % is a nondecreasing function of j, and W;,; for a fixed ¢ is a decreasing
function of j reducing to 0 at 5 = ¢. So, two distinct cases occur in semi-closed interval [jf_1 ,1) for j. If
Wit > Bf‘l initially then these two functions intersect in [j¥ |,4). In this case, search for j* continues
until Wixq,; < Bf‘l and then only j* and j*— 1 are considered for setting j* as j¥ = j* if Bf*_l < W;,; and
jF=j*—1 otherwise. Note that this scheme automatically detects j¥ =i —1if W, ; and Bf‘l intersect in
open interval (i —1,¢). If, however, W1 ; < Bf‘l initially then Bf‘l lies above W, ; in closed interval
[jf_1 ,1]. In this case, the minimum value occurs at the first value of 7, i.e., jf = jf_l. These improvements
lead to an O((N — K) K)-time algorithm since the computation of all B¥ values for a fixed k¥ makes O(N — K)
references to already computed Bf_l values. Fig. 1 displays a run-time efficient implementation scheme of
this O((N — K') K)-time DP algorithm, which avoids the explicit min-max operation required in (1). In Fig. 1,

Bf values are stored in a table whose entries are computed in row—major order.

MS W, N, K)
sp — k for k —0,1,..., K—1;, sg «— N,

Ly —wy for k—1,... K—-1, Lg Hzg:Kwk;
repeat
b—{k | Ly ismaximumover | <k < K};
B%Lb;

if s;_1 + 1 = s; then
exit the repeat-loop;
k —b;
while L; > Band k£ > 1 do
Sp—1 — Sp—1+ 1;
Ly — Ly —w,, _,;
Lp—1 — Ly—1+ ws,_,;
if L; < B then
k—k—1;
until 7, > B;
return B,,; — B;

Figure 2: Iterative refinement algorithm proposed by Manne and Sorevik [26].

3.3 Iterative Refinement

The algorithm proposed by Manne and Sorevik [26], referred to here as the MS algorithm, is based on finding
a sequence of non-optimal partitions such that there exists only one way each partition can be improved. For
this purpose, they introduce a special kind of partition, namely the leftist partition (LP). Consider a partition I1
such that Py, is the leftmost processor containing at least two tasks. I is defined as an LP if increasing the load
of any processor F; that lies to the right of P; by augmenting the last task of P,_; to P, makes P, a bottleneck
processor with a load greater than or equal to C'(IT).

Let IT be an LP with bottleneck processor P, and bottleneck value C(IT)= B = L;. If P, contains only one
task then IT is optimal. So, assume that P, contains at least two tasks. The refinement step, which is shown by
the inner while-loop in Fig. 2, then tries to find a new LP of lower cost by successively removing the first task
of Py, and augmenting it to P,_; for k=0b,b—1....until L; < B. Unsuccessful refinement occurs when the
while-loop proceeds until £ =1 with L; > B. Manne and Sorevik [26] proved that a successful refinement of
an LP gives a new LP and that LP must be optimal if the refinement is unsuccessful. So, an initial LP is needed
to start the algorithm. As shown in Fig. 2, Manne and Sorevik [26] proposed to use an initial LP where the
K —1 leftmost processors each have only one task and last processor contains the rest of the tasks.

The MS algorithm moves each separator index at most N—K times so that the total number of separator-index
moves is O(K(N—K)). A max-heap is maintained for the processor loads to speed up the operation of finding
a bottleneck processor at the beginning of each repeat-loop iteration. The cost of each separator-index move is
O(lg K) since it necessitates one decrease-key and one increase-key operations. So, the overall complexity of
the MS algorithmis O(K (N — K)Ig K).

3.4 Parametric Search

The parametric-search approach relies on repeated probing for the existence of a partition I with a bottleneck
value no greater than a given B value, i.e., C'(IT) < B. The probe algorithms exploit the greedy-choice property
on the existence and construction of I. The greedy choice here is to minimize the work remaining after loading

processor Py subjectto Ly < B fork=1,..., K—11in order. The PROBE(B) functions given in Fig. 3 exploit

PROBE (B) PROBE (B)

50 —0; k—1; so—0; k< 1; step— N/K,
Bsum — B; Bsum — B;
while & < K and Bsum < Wy, do while & < K and Bsum < W;,; do
s; < BINSRCH (W, sp—1+1, N, Bsum); while W(step] < Bsum do
Bsum — W|s;] + B; step — step + N/K;
k—k+1; s; < BINSRCH (W, step— N/ K, step, Bsum);
if Bsum > W,;,; then Bsum — W][si] + B;
return TRUE; k—k+1;
else if Bsum > W;,; then
return FALSE; return TRUE;
else
return FALSE,;
(@) (b)

Figure 3: (a) Standard probe algorithm with O(K 1g, N') complexity, (b) O(K lg,(N/K))-time probe algo-
rithm proposed by Han, Narahari, and Choi [12].

this greedy property as follows. PROBE finds the largest index s; so that W; ,, < B, and assigns subchain
7,5, to processor Py with load L =W ,,. Hence, the first task in the second processor is %5, ;1. PROBE then
similarly finds the largest index s, so that W, 4 5, < B, and assigns the subchain 75 4 5, to processor P, with
load L1 =W, 41.,. This process continues until either all tasks are assigned or the processors are exhausted.
The former and latter cases denote the feasibility and infeasibility of B, respectively.

Fig. 3(a) illustrates the standard probe algorithm. As seen in Fig. 3, the indices s;,3p,...8x_
are efficiently found through binary search (BINSRCH) on the prefix-summed W-array. In this figure,
BINSRCH(W, i, N, Bsum) searches W in the index range [7, N] to compute the index i < j < N such
that W[j] < Bsum and WI[j 4+ 1] > Bsum. The complexity of the standard probe algorithm is
SR 0(1g(N —s;)) = O(KIg N). Han, Narahari and Choi [12] proposed an O(K Ig N/ K)-time probe
algorithm (see Fig. 3(b)) exploiting K repeated binary searches on the same W-array with increasing search
values. Their algorithm divides the chain into K subchains of equal length. At each probe call, a linear search
is performed on the weights of the last tasks of these K subchains to find out in which subchain the search
value could be, and then binary search is performed on the respective subchain of length N/ K. Note that since
the probe search values always increase, linear search can be performed incrementally, that is search continues
from the last subchain that was searched to the right. Thus, the total time for K searches on K numbers is only
O(K). This means a total cost of O(K 1g(N/K') + K') for K binary searches, and hence the probe function.

3.4.1 Bisection as an Approximation Algorithm

Let f(B) be the binary-valued function where f(B) = 1 if PROBE(B) is true and f(B) = 0 if PROBE(B)
is false. It is clear that f(B) is nondecreasing in B. It is also clear that B, lies between LB = B* =
Wiot/ K and U B = Wy,;. These observations are exploited in the bisection algorithm leading to an efficient
e-approximate algorithm, where ¢ is the desired precision. Interval [W;,;/ K, W},,] is conceptually discretized
into (Wioe — Weot/ K') /€ bottleneck values, and binary search is used in this range to find the minimum
feasible bottleneck value B,,;. Fig. 4 illustrates the bisection algorithm. The bisection algorithm performs
O(lg(Wy.t/€)) PROBE calls and each PROBE call costs O(K 1g(N/K')). Hence, the bisection algorithm runs
in O(N+ K 1g(N/K)lg(Wy./e€)) time, where 8(N') cost comes from the initial prefix-sum operation on W.

The performance of this algorithm deteriorates when 1g(W,,;/¢) becomes comparable with N.

¢-BISECT (W, N, K, €)
LB — B*; UB — Wtot;
repeat
B— (UB+LB)/2
if PROBE (B) then

UB — B;
else
LB — B;

until U B < LB+ ¢;
return B,,; — UB;
Figure 4: Bisection as an e-approximation algorithm.
3.4.2 Nicol’s Algorithm

Nicol’s algorithm [33] exploits the fact that any candidate B value is equal to weight W; ; of a subchain. The
naive solution is to generate all subchain weights of the form W; ;, sort them, and then use binary search to find
the minimum W, ; value for which PROBE(W, ;) =TRUE. Nicol’s algorithm efficiently searches for the earliest
range W, , for which B,,; = W, ;, by considering each processor in order as a candidate bottleneck processor in
an optimal mapping. Let I1,,; be the optimal mapping constructed by greedy PROBE(B,,;), and let processor
P, be the first bottleneck processor with load Ly =W, _ 41,5, = Bopt in Ty = (50, 815+« s Sb—15 Sy - - -5 SK)
Under these assumptions, this greedy construction of I,,; ensures that each processor P} preceding F; is
loaded as much as possible with L < By, for k=1,2,...,b—1inIl,,;. Here, PROBE(L;) =FALSE since
Ly < Bopt, and PROBE(Ly, + w,, +1) =TRUE since adding one more task to processor P, increases its load to
Litws, 41> B,y Hence,if b=1 (i.e., P is a bottleneck processor) then s; is equal to the smallest index ¢ such
that PROBE(W, ;,) =TRUE, and B,,; = B; =W ;. If, however, b > 1 then because of the greedy choice property
P1 should be loaded as much as possible without exceeding B,,,; = By, < By, which implies that s; =¢; —1 and
hence Iy = W; ;1. If b=2 then s, is equal to the smallest index i, such that PROBE(W}, ;,) = TRUE, and
Bopt = By =W, ;,. If b>2 then s, =4, —1. This iterative process continues to compute z; as the smallest

index for which PROBE(W;,_, ;,) =TRUE and save B, =W, forb=1,2,..., K —1 with ¢xr = N. Finally,

b—15b>
optimal bottleneck value is selected as B,,; =minj<p<x Bs.
Fig. 5 illustrates Nicol’s algorithm. As seen in this figure, given ¢;_1, ¢; is found by performing a binary

search over all subchain weights of the form W; for 41 < j < N, in the bth iteration of the for-loop.

b—1:7"
Hence, Nicol’s algorithm performs O(lg N') PROBE calls to find 7, at iteration b, and each PROBE call costs
O(K 1g(N/K)). Thus, the cost of computing an individual By valueis O(K 1g N 1g(N/K)). Since K —1 such
By, values are computed, the overall complexity of Nicol’s algorithm is O(N + K2 1g N 1g(N/K)), where the
§(N') cost comes from the initial prefix-sum operation on W.

Two possible implementations of Nicol’s algorithm are presented in Fig. 5. Fig. 5(a) illustrates a straight-
forward implementation. Fig. 5(b) illustrates a careful implementation, which maintains and exploits the
information on the success or failure of previous probe calls to be able to determine the results of some future
probes without invoking the PROBE function. As seen in Fig. 5(b), this information is efficiently maintained as
an undetermined bottleneck-value range (. B, U B), which is dynamically refined in the while-loop depending
on the success or failure of the probe call. Any bottleneck value encountered outside the current range is
immediately accepted or rejected without any probe calls. Although this simple scheme does not improve the

complexity of the algorithm, it drastically reduces the number of probe calls thus drastically increasing the

run-time performance as will be discussed in Section 6.

8

NICOL- (W, N, K)
io — 1,
forb — 1to K — 1do
tlow «— iy_1; thigh — N;
while ilow < thigh do
imid — (ilow + ihigh) / 2;
B — W[imid] — Wip—1 —1;
if PROBE (B) then
thigh — imid;
else
tlow — tmid + 1;
1y — ihigh;
By — Wiy — Wlip—1—1];
Bg — WIN] = Wlik-1—1};
return B,,; — min;<,<x{By};

NICOL (W, N, K)
io — 1; LB — B*; UB «— Wtot;
forb — 1to K — 1do
tlow «— 1y_y1; thigh — N;
while :low < ihigh do
imid — (ilow + ihigh) / 2;
B — Wlimid] — W[iy—1—1]
if LB < B < UB then
if PROBE (B) then
thigh — imid,
UB — B;
else
low — imid + 1;
LB — B;
elseif B > UB

thigh — imid,
else
tlow — imid + 1;
1y «— thigh;
Bb — W[Zb] — W[ib_l— 1],
Bg — W[N] - W[iK—l_1]§
return B,,; — minj<s<x {Bj};
(a) (b)
Figure 5: Nicol’s [33] algorithm: (a) straightforward implementation, (b) careful implementation with dynamic
bottleneck-value bounding.

4 Proposed CCP Algorithms
4.1 Restricting the Search Space

The proposed CCP algorithms exploit lower and upper bounds on the optimal bottleneck value to restrict
the search space for s; separator values as a preprocessing step. Natural lower and upper bounds for the
optimal bottleneck value B,,; of a given CCP problem instance (W, N, ') are L B = max{B*, w,,,} and
UB = B* 4+ w4, respectively. However, wy,,, < B* in coarse grain parallelization (K < N) of most
real-world applications. The presentation, here and hereafter, will be for w,,,,, < B* = LB even though
all findings to be presented also become valid by replacing B* with L B = max{B*, w,,,,}. The following

lemma describes how to use these natural bounds on B,,; to restrict the search space for the separator values.

LEMMA 2. For a given CCP problem instance (W, N, K), if By is a feasible bottleneck value in the range
[B*, B*+W,q2), then there exists a partition I1= (sq, s1, . .., sk) of cost C(IT) < By with S Ly, < s, < S Hy,
fork=1,2,..., K—1,where SLj and S H}, are, respectively, the smallest and largest indices such that

Wisr, > k(B"—wpe(K —k)/K) and Wisy, < k(B" + wpu(K —k)/K).

PROOF. Let By = B*+ w, where 0 <w < w, . Partition IT can be constructed by PROBE(B), which loads the
first & processors as much as possible subjectto L, < By,forqg = 1,2,..., k. Inthe worst case, ws, 41 = Wpax
for each of the first k processors. So, we have W) ,, > f(w)=k(B*+w—wy,,) for k=1,2,..., K — 1.
However, it should be possible to divide the remaining subchain 7, 1 n into K —k parts without exceeding
By ie, W, .\ N < (K—k)(B*4w). So, we also have Wi ;, > g(w)=W;,; — (K —k) (B*+w). Note that
f(w) is an increasing, whereas ¢g(w) is a decreasing function of w. Hence, the minimum of max{ f(w), g(w)}
occurs at the intersection of f(w) and g(w),thus Wy 5, > k (B* —wye(K —k)/K).

For the proof of the upper bounds on s, values, we can start with W, ;, < f(w)=k(B* + w) which holds

when L, = B* + w for ¢=1,2,...k. However, the condition Wy, 41 v > (K — k)(B*+w— w4,) ensures
the feasibility of By = B* 4+ w, since PROBE(B) can always load each of the remaining (K — k) processors
with B* +w — wy,4,. So, we also have W, < g(w) = Wit — (K — k)(B* 4w — wy4,). Here, f(w)
is an increasing, whereas g(w) is a decreasing function of w. By following similar steps, we can obtain

Wis, <k (B*+wman(K — k)/K). 0

COROLLARY 3. The separator range weights are AW}, = ij{;Lk w; =W s, Wi s1, =2 Wiz k (K—k)/ K
with a maximum value Kw,,,,./2 at k=K /2.

The use of this corollary requires finding w,, ..., which brings an overhead equivalent to that of the prefix-
sum operation, hence should be avoided. In this work, we propose and adopt a practical scheme to construct
the bounds on separator indices. We run the RB heuristic to find a hopefully good bottleneck value Brg,
and use Brp as an upper bound for bottleneck values, i.e., UB = Brg. Then, we run LR-PROBE(Bgg)
and RL-PROBE(Bgp) to construct two mappings IT! = (A}, hl,... kL) and TI?> = (63,43,...,(5) with
C (1Y), C(11?) < Bgrp. Here, LR-PROBE denotes the left-to-right probe given in Fig. 3, whereas RL-PROBE
denotes a right-to-left probe function which can be considered as the dual of the LR-PROBE. RL-PROBE exploits
the greedy-choice property from right to left. That is, RL-PROBE assigns subchains from the right end towards
the left end of the task chain to processors in the order Px, P _1,..., P;. From these two mappings, lower
and upper bound values for s; separator indices are constructed as S = (7 and S Hy = h}, respectively, for
k=1,..., K—1. These bounds are further refined by running LR-PROBE(B*) and RL-PROBE(B*) to construct
two mappings IT> = (63, (3, ..., (3.) and TI* = (h{, b1, . .., k%), and then defining S L), = max{S Ly, (;} and
S Hy=min{S5 Hy, hi} fork=1,..., K—1. Lemmas 4 and 5 prove the correctness of these bounds.

LEMMA 4. For a given CCP problem instance (W, N, K) and a feasible bottleneck value By, let TI' =
(hi, bl .. Rl), T2 =((3,03,... (%) be the partitions constructed by LR-PROBE(B;), and RL-PROBE(B;),
respectively. Then, any partition T1= (s, s1, ..., sx) of cost C(I1)= B < By satisfies (3 < sp < h}.
PROOF. By the property of LR-PROBE(B;) h} is the largest index where 7, pl can be partitioned into k parts
without exceeding B;. If s; > h}, then the bottleneck value will exceed By and thus B. By the property of
RL-PROBE(B;) (2 is the smallest index where %i v can be partitioned into K —k parts without exceeding By.
If s, < (2, then the bottleneck value will exceed B ¢ and thus B. O
LEMMA 5. For a given CCP problem instance (W, N, K), let TP = ((3, 63, ..., (3.), TI* = (h}, b, ..., h%) be
the partitions constructed by LR-PROBE(B*), and RL-PROBE(B*), respectively. Then, for any feasible bottle-
neck value By, there exists a partition TI= (sq, s1, . .., sx) of cost C(I1) < B; which satisfies (3 < sy <h{.
PROOF. Consider the partition IT= (s, s, . . ., Sx’) constructed by LR-PROBE(By). It is clear that this partition
already satisfies the lower bounds, i.e., s; > Ki. Assume that s; > h?, then the partition IT obtained by moving
s back to h{ also yields a partition with cost C(IT") < By, since 7}4 41,5 can be partitioned into K —Fk parts

without exceeding B*. 0

10

The difference between Lemmas 4 and 5 is that the former ensures the existence of all partitions with cost
less than or equal to B, within the given separator-index ranges, whereas the latter only ensures the existence
of at least one such partition within the given ranges. The following corollary combines the results of these

two lemmas.

COROLLARY 6. For a given CCP problem instance (W, N, K) and a feasible bottleneck value By, let
Ol =(h, Al . R T2 = (03,3, .. ., (3.), TP = (3,03, ...,03.),andT1* = (h}, hY, . . ., h;) be the partitions
constructed by LR-PROBE(B;), RL-PROBE(B;), LR-PROBE(B*), and RL-PROBE(B*), respectively. Then, for
any feasible bottleneck value B in the range [B*, By|, there exists a partition IT = (sg, s1,...,5x) of cost

C(I) < BwithSL, < sp < SHy,fork=1,2,.. .,K—l,WhereSLk:max{K%,ﬁi} andSHk:min{h,L,hi}.

COROLLARY 7. The separator range weights become AW, =2 min{k, (K — k) }w,,q, in the worst case, with
a maximum value Kw,,,, atk=K/2.

Lemma 2 and Corollary 6 directly infer the following theorem since B* < B,y < B*+wp05.

THEOREM 8. For a given CCP problem instance (W, N, K'), and SIj and S Hj, index bounds constructed
according to Lemma 2 or Corollary 6, there exists an optimal partition I1,,; = (o, 51, ..., 5K) With SLj <

s < SHk,fOI‘kII,2,...,I(— 1.

Comparison of the separator range weights given in Lemma 2 and Corollary 6 shows that the separator
range weights produced by the practical scheme described in Corollary 6 may be twice worse than those of
Lemma 2 in the worst-case. However, this is only the worst-case behavior, and the practical scheme finds fairly
better bounds since the ordering of the chain usually prevents the worst-case behavior, and Brp < B*+ w44

Experimental results given in Section 6 justify this expectation.

4.1.1 Complexity Analysis Models
Corollaries 3 and 7 give bounds on the weights of the separator-index ranges. However, we need bounds on the
sizes of these separator-index ranges for the sake of computational complexity analysis of the proposed CCP
algorithms. Here, the size ASy, = S Hj,— 5 L+ 1 denotes the number of tasks within the kth range [S L, S Hp).
Miguet and Pierson [27] propose the model w; = §(w,,,) for t=1,2,... N in order to prove that their H1
and H2 heuristics allocate §(N/ K) tasks to each processor. Here, w,,, = Wi, /N denotes the average task
weight. This assumption means that the weight of each task is not too far away from the average task weight.
Using Corollaries 3 and 7, w; = Q(wg,,) part of the model induces ASy, = O(K w45/ Wayy). Moreover,
w; = O(wyg,,) part of the model can be exploited to induce the optimistic bound AS), = O(K'). However,
we find their model too restrictive, since the minimum and maximum task weights can substantially deviate
from w,,,. Hence, we here establish a looser and more realistic model on the task weights, so that for any
subchain 7; ; with weight W; ; sufficiently larger than w,,,,, average task weight within the subchain 7; ;
satisfies Q(wq,,). Thatis, A; ;=j—i +1 = O(W; ;/wgy,). This model, referred to here as model M, directly
induces ASt = O(K Wiz [Wany), since AWy, < AWg =K wynq,/2 for k=1,2,... K —1.

11

DP+ (W, N, K,SL,SH)
B[1,i] — WI[i] for i = SLi,SLi+1,...,SHy;
B[I,SH1—|—1] — 00O,
for k — 2to K do
J—=SLi_1;
for : — SL; to SH;, do
if W[i] — W[j] > Blk—1, j] then
repeat j — j + 1 until W[i] - W[j] < Blk—1,J];
if W[i] — W[j—1] < B[k—1, j] then

J—=J—1
Blk,i] — W[i] — W[jl;
else

Blk,i] — Blk—1, jl;

else
Blk,i] — B[k —1,j];
B[l,SHk—I—l] — 00
return B,,; — B[K, NJ;
Figure 6: Dynamic-programming algorithm with static seperator-index bounding.

4.2 Dynamic-Programming Algorithm with Static Separator-Index Bounding

The proposed DP algorithm, referred to here as the DP+ algorithm, exploits the bounds on the separator indices
for the efficient solution of the CCP problem. Figure 6 illustrates the proposed DP+ algorithm where input
parameters S I and S H denote the index bound arrays, each of size K, computed according to Corollary 6 with
By =Bgrp. Note that S Lx =5 Hg =N since only B[K, N]need to be computed in the last row. As seen in
Fig.6,only Bf values for j =S Ly, SLi+l, ..., S H}are computed at each row k by exploiting Corollary 6 which
ensures the existence of an optimal partition IT,,; = (s, 1, . .., sx) with SLj < s < S Hy. Thus, only these
Bf values will be sufficient for the correct computation of Bf"’l values for =5 Lyq1, SLpyr1+1, ..., 5 Hpyy
at the next row k+1.

As seen in Fig. 6, explicit range checking is not adopted in the proposed algorithm for the sake of utmost
efficiency. However, the j-index may proceed beyond S Hj, to S Hi+ 1 within the repeat-until-loop while
computing Bf“ with S L1 <4 < SHpq in two cases. In both cases, functions W, ; and Bf intersect
in the open interval (S Hy, SHi+ 1) so that Bng < Wsm,+1,; and BgHH] > WsH,+2,:. In the first case,
i=SHp+1sothat Wy, ; and Bf intersect in (¢ — 1, ¢), which automatically implies that Bf“ =W,_,,; with
jf“ =51 since W;_; < Bf as mentioned earlier in Section 3.2. In the second case, 7 > S Hj -+ 1 for which
Corollary 6 guarantees that Bf*! = Wsp 1, < Bng 41 thus we can safely select ji+l = S I;. Note that
Wsr,+1,,=8 g ,+1 May correspond to a case leading to another optimal partition with 7 f g 1 =95 Hi+1.
As seen in Fig. 6, both cases are efficiently resolved by simply storing co to Bng 41 as a sentinel. Hence,
in such cases, the condition Wsg, 41 < Bg Hyt1 = in the if-then statement following the repeat-until-loop
statement always becomes true so that the j-index automatically moves back to S Hj. Note that the scheme
of computing B% 1, +1 for each row k, which seems to be a natural solution, does not work since the correct
computation of B Q}}LH 41 may necessitate more than one Bf value beyond the S H}, index bound.

The nice property of the DP approach is that it can be used to generate all optimal partitions by maintaining
a K x N matrix to store the minimum jf index values defining the Bf values at the expense of increased
execution time and asymptotical increase in the space requirement. Recall that the index bounds S I and S H

computed according to Corollary 6 restrict the search space for at least one optimal solution. The index bounds

12

can be computed according to Lemma 5 to serve that purpose, since the search space restricted by Lemma 5
includes all optimal solutions.

The running time of the proposed DP+ algorithm is O(N+ K 1g N)+ 55| 0(AS}). Here, §(N') cost comes
from the initial prefix-sum operation on the W array, and O(K Ig N') cost comes from the running time of the
RB heuristic and computing the separator-index bounds S' 7. and S'H according to Corollary 6. Under model
M, AS, = O(K W45/ Wayg), and hence the complexity is O(N + K IgN+K?wpap / Wayg). The algorithm
becomes linear in N, when the separator-index ranges do not overlap, and the condition w4, < 2Wj:/ K2

guarantees non-overlapping index ranges.
4.3 Iterative Refinement Algorithms

In this work, we improve the MS algorithm and propose a novel CCP algorithm, namely the bidding algorithm,
which is run-time efficient for small-to-medium number of processors. The main difference between the MS
and bidding algorithms is as follows: the MS algorithm moves along a sequence of feasible bottleneck values,
whereas the bidding algorithm moves along a sequence of infeasible bottleneck values such that the first feasible

bottleneck value becomes the optimal.

4.3.1 Improving the MS Algorithm

The performance of the MS algorithm [26] strongly depends on the initial partition. The initial partition
proposed by Manne and Sorevik [26] satisfies the leftist partition constraints. But it leads to very poor run-
time performance. Here, we propose using the partition generated by PROBE(B*) as an initial partition. This
partition is also a leftist partition, since moving any separator to the left will not help to decrease the load of
the bottleneck processor. This simple observation leads to significant improvement in run-time performance
of the algorithm. Also, using a heap as a priority queue does not give better run-time performance than using
a running maximum despite its superior asymptotic complexity. In our implementation, we used a running
maximum.

4.3.2 Bidding Algorithm

This algorithm increases the bottleneck value in an incremental manner, starting from the ideal bottleneck
value B*, until it finds a feasible partition, which happens to be an optimal one. Consider a partition
IT; = (sg, s1, . . ., Si) constructed by PROBE(B;) for an infeasible B;. After detecting the infeasibility of this
B, value, the important issue is to determine the next larger bottleneck value B to be investigated. Clearly, the
separator indices of the partitions to be constructed by the future PROBE(B) calls with B > B; will never be to
the left of the respective separator indices of I'l;. Moreover, at least one of the separators should move to the right
in the hope of feasibility, since load of the last processor determines the infeasibility of the current B; value (i.e.,
Ly > By). In order not to miss the smallest feasible bottleneck value, the next larger B value is computed by
selecting the minimum of the processor loads that will be obtained by moving the end-index of every processor
to right by one position. That is, the next larger B value is equal to min{min;<<x { Lr+ws,+1}, L }. Here,

we call the L, +w;, 11 value as the bid of processor P, which refers to the load of P if the first task 7, ;1 of

13

BIDDING (W, N, K)
sp —O0 for £k —0,1,... K—1; sg — N;
BIDS[O]B — Lr — Wtot;
B — B*;, k+—0;
while L, > B do
repeat k — k + 1
if s, = 0 then
s «— BINSRCH (W, sp—1+1, N, W[Sk_l] + B);
Lk — W[Sk] - W[Sk_l];

while L; + Wep 41 < B do
Sp — s+ 1;
Ly — Ly + Wsy, 5
mybld — Ly + Wsy 15
if mybid < BIDS[k—1].B then
lBIDS[k].(B, q) — (mybid, k);

else
BIDS[k].{B, q) — BIDS[k—1].(B, q);
Lr — Wtot - W[Sk]; rbid — Lr / ([{ — k’),
until rbid > Bor k= K — 1;
if rbid < BIDS[k].B then
B «— rbid;
else
(B, k) —BIDS[k].(B. q):
k—k-—1;
return B,,; — B;

Figure 7: Bidding algorithm.
the next processor is augmented to Pr. Note that the bid of the last processor Px is equal to the load of the
remaining tasks. If the best bid B comes from processor P, probing with new B is performed only for the
remaining processors (Py, Pyy1, ... Px) in the suffix W, 41.n of the prefix-summed W-array.

The bidding algorithm is presented in Fig. 7. The innermost while-loop implements a linear probing scheme,
such that the new positions of the separators are determined by moving them to the right, one by one. This linear
probing scheme is selected since the new positions of the separators are likely to be in a close neighborhood of
the previous ones. Note that binary search is used only for setting the separator indices for the first time. After
the separator index s, is set for processor Py during linear probing, the repeat-until-loop terminates if it is not
possible to partition the remaining subchain 7, 4 x into K —k processors without exceeding the current B
value,i.e., rbid=L,/(K —Fk) > B, where L, denotes the weight of the remaining subchain. In this case, the
next larger B value is determined by considering the best bid among the first & processors and rbid.

As seen in Fig. 7, we maintain a prefix-minimum array BIDS for computing the next larger B value. Here,
BIDS is an array of records of length K, where BIDS[k].B and BIDS[k].b store the best bid value of the
first £ processors and the index of the processor defining it, respectively. BIDS[0] is used to enable running
prefix-minimum operation.

The complexity of the bidding algorithm for integer task weights under model M is O(K Ig N4+ K w 0.+
K2(Wpnaz/Wavg)). Here, O(K Ig N') cost comes from the initial settings of separators through binary search.
The B value is increased at most B,,; — B* < w4, times, and each time the next B value can be computed
in O(K') time, which induces the cost O(K w,,,.). The total area scanned by the separators is at most

O(I(z(wmm/wavg)). For non-integer task weights, the complexity can reach to O(K 1g N+K3(wmm/wwg))

14

e-BISECT+ (W, N, SL, SH, K) RPROBE (B)

LB — B*; Bsum «— B;
UB «— Bgrp; for k — 1to K—1do
repeat sy — BINSRCH (W, SLy, SHy,, Bsum);
B: —(UB+LB) /2 Bsum «— W(si] + B;
if RPROBE (B;) then if Bsum > W;,; then
for k — 1to K —1do SHj — syp; return TRUE,;
UB — By; else
else return FALSE;
fork — 1to K —1do SLj; — sy,
LB «— By;

untilUB < LB +¢;
return B,,; — UB;

Figure 8: Bisection as an e-approximation algorithm with dynamic seperator-index bounding.
in the worst case, which occurs when only one separator index moves to the right by one position at each
B value. We should note here that the use of a min-heap for finding the next B value enables terminating a
repeat-loop iteration as soon as a separator-index does not move. The trade-off in this scheme is the O(lg K)
cost to incur at each separator-index move because of the respective key-update operation on the heap. We
have also implemented this scheme and experimentally verified that it increases the overall execution time in
the CCP instances tested in Section 6.
4.4 Parametric Search Algorithms
In this work, we exploit the theoretical findings given in Section 4.1 to propose an improved probe algorithm.
The improved algorithm, referred to here as the restricted probe (RPROBE), exploits the bounds computed
according to Corollary 6 (with By = Bgrp) to restrict the search space for s; separator values during the
binary searches in the prefix-summed WW-array. That is, BINSRCH(W, STy, SHy, Bsum) in RPROBE searches
W in the index range [SLg, S Hy| to find the index SL; < s < SHj such that W[sz] < Bsum and
W(sp+1] > Bsum through binary search. This scheme reduces the complexity of an individual probe call to
SR 0(1gAp) = O(K 1g K + K 1g(wmar/Wayg)) by the results of Corollaries 3 and 7. Note that complexity of
RPROBE reduces to O(K" 1g I') for sufficiently large K" where K = Q(w,qz/wayg)- Figs. 8,9 and 10 illustrate
the RPROBE algorithms tailored for the respective parametric-search algorithms.
44.1 Approximate Bisection Algorithm with Dynamic Separator-Index Bounding
Proposed bisection algorithm, illustrated in Fig. 8, searches the space of bottleneck values in [B*, Brp| range
as opposed to [B*, W;,;]. In this algorithm, if PROBE(B;) =TRUE, then the search space is restricted to B < B,
values, and if PROBE(B;) = FALSE, then the search space is restricted to B > B; values. In this work, we
exploit this simple observation to propose and develop a dynamic probing scheme to increase the efficiency of
successive PROBE calls, by modifying the separator index-bounds depending on the success and the failure of
the probes. Let IT; = (to,%,...,1x) be the partition constructed by PROBE(B;). Any future PROBE(B) call
with B < B; will set the s, indices with s; < t5. Thus, the search space for s; can be restricted to those indices
less than or equal to #;. Similarly, any future PROBE(B) call with B > B; will set the s indices with s, > .
Thus, the search space for s; can be restricted to those indices greater than or equal to .

As illustrated in Fig. 8, dynamic update of separator-index bounds can be performed in §(k') time through a

15

EXACT-BISECT (W, N, SL, SH, K) RPROBE (B)

LB — B*; UB < Bgp; Bsum — B,
repeat fork — 1to K—1do
B —(UB+LB) /2 s; < BINSRCH (W, SLy, SHy, Bsum);
if RPROBE (B;) then Bsum — W|si] + B;
fOrk%ltOI(—ldOSHk — Sf, LkHW[Sk]—W[Sk_l]
UB<—max1§k§K{Lk}; LK HW[N]—W[SK_l]
else if Lx < B then
fork — 1to K — 1do SHy, — syp; return TRUE
LB <—min{min1§k<K{Lk —|—wsk+1},LK} else
until U B = LB; return FALSE

return B,,; — UB;

Figure 9: Exact bisection algorithm with dynamic seperator-index bounding.
simple for-loop over S'I or S H arrays depending on failure or success of RPROBE(B;), respectively. However,
in our implementation, this update is efficiently achieved in O(1) time through the pointer assignment S [, —IT
or S H «—II depending on failure or success of the RPROBE(B;).

Similar to the e-BISECT algorithm, the proposed e-BISECT+ algorithm is also an e-approximation algorithm
for general workload arrays. However, both ¢-BISECT and ¢-BISECT+ algorithms become exact algorithm for
integer-valued workload arrays by setting ¢ = 1. As shown in Lemma 1, Brp < B*+w,,,. Hence, for integer-
valued workload arrays the maximum number of probe calls in the e-BISECT+ algorithm is Ig w4, thus the
overall complexity is O(N + K 1g N +1g(w 00) (K 1g K + K 1g(w 42/ Way4))) under model M. Here, (V)
cost comes from the initial prefix-sum operation on the W array, and O(K 1g N') cost comes from the running
time of the RB heuristic and computing the separator-index bounds .5' L. and S H according to Corollary 6.
4.4.2 Bisection as an Exact Algorithm
In this work, we enhance the bisection algorithm to be an exact algorithm for general workload arrays by
appropriate update of the lower and upper bounds after each probe call. The idea is to move the upper and
lower bounds on the value of an optimal solution to a realizable bottleneck value, i.e., the total weight of a
subchain of W after each probe call. This reduces the search space to the finite set of realizable bottleneck
values, as opposed to the infinite space of bottleneck values defined by a range [L B, U B]. Each bisection step
is designed to eliminate at least one candidate value, thus the algorithm terminates in finite number of steps to
find the optimal bottleneck value.

After a probe call RPROBE(B;), current upper bound value U B is modified if RPROBE(B;) succeeds.
Note that RPROBE(B;) not only determines the feasibility of B;, but also constructs a partition IT with
cost(Il;) < By. Instead of reducing the upper bound U B to B; we can further reduce U B to the bottleneck
value B = cost(I1;) < B, of the partition IT; constructed by RPROBE(B;). Similarly, current lower bound . B
is modified when RPROBE(B;) fails. In this case, instead of increasing the lower bound B to B;, we can
exploit the partition I1l; constructed by RPROBE(B,) to increase I, B further to the smallest realizable bottleneck
value B greater than B;. How to compute this value is already described in our bidding algorithm:

B = min{lgi&,{h +ws, 1}, L}

where Lj, denotes the load of processor Py, in I1;. Fig. 9 presents the pseudocode of our algorithm.

Each bisection step divides the set of candidate realizable bottleneck values into two sets, and eliminates

16

one. The initial set can have a size between 1 and N2, initial number of realizable bottleneck values. Assuming
that they are equally likely (a more even distribution is likely if B; is chosen as the medium of LB and U B),

the expected complexity of the algorithm will be
N2
1 N v v v
T(N) =+ S T(i)+ O(K1g K + K 1g(wman/Waug)),

i=1

which has the solution O(K 1g K'1g N + K 1g N 1g(wmas/Wavg)). Here, O(K1g K + K 1g(wp 00/ Wayg)) 18
the cost of a probe operation, and Ig V is the expected number of probe calls. Thus, the overall complexity
becomes O(N+ K 1g K'1g N + K 1g N 1g(wm a5/ Wang)), Where 8(N') cost comes from the initial prefix-sum
operation on the W array.
44.3 Improving Nicol’s Algorithm as a Divide-and-Conquer Algorithm
The theoretical findings presented in previous sections can be exploited at different levels to introduce improve-
ment to the performance of Nicol’s algorithm. The obvious improvement is to use the proposed restricted probe
function instead of the conventional probe functions. The careful implementation scheme given in Fig. 5(b)
enables the use of dynamic separator-index bounding. In this work, we exploit the idea behind the bisection
algorithm to propose an efficient divide-and-conquer approach for Nicol’s algorithm for further improvement.

Consider the sequence of probes of the form PROBE(W, ;) performed by Nicol’s algorithm for processor
Py to find the smallest index 7 = ¢; such that PROBE(W, ;) = TRUE. Starting from a naive bottleneck-value
range (L By = 0, UBy = Wiy.), the success and failure of these probe calls can be exploited to narrow
this range to (LB, U B;). That is, each PROBE(W; ;) = TRUE decreases the upper bound to W, ; and each
PROBE(W, ;) =FALSE increases the lower bound to W} ;. It is clear that we will have (LB